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For a function f E C 2
[ - I, I] with I ~ r < x inflection points and sufficiently

large n we construct an algebraic polynomial p" of degree ~ n satisfying
/,,(x) p~ (x);' 0, x E[ - \, I], and such that 1i!"'1 - p;:111 , ~ C,n -2 + "W",(/", n -I),

V =0, I, 2, where C, = C(r), v = 0, I, C2 = C2(r)/)1 - 0:
2

(0: is the point of inflec­
tion nearest to ±l). and w",l/",n- ' ) denotes the Ditzian-Totik modulus of con­
tinuity off" in the uniform metric, ,c' 1995 Academic Press, Inc,

1. INTRODUCTION AND MAIN RESULT

Our prime interest in this paper is comonotone and coconvex polyno­
mial approximation, that is, approximation of a function f which is
piecewise monotone (or piecewise convex, i.e., has finitely many inflection
points) by polynomials which are comonotone (or coconvex) with f Let
nn denote the set of all algebraic polynomials of degree ~n, 11·11 :== 11·11 ex:

denote the uniform norm and cp(x) :=Jl-x2
. Recall that the m-th order

Ditzian-Totik modulus w;U, c5) and the usual modulus of smoothness
wm(j, c5) are given respectively by (see [2], for example)

w;U, (5) = sup 11L1;rp(x)U: x)11
O<h~t5

where

and wm(j,J)= sup 11L1;U~x)ll,
O<h~t5

{

m (m) , (m )-I m-I \'-- +i
L1~/(f,X):= j~O i ( ) f· 2'1 '1,

0, otherwise.

is the symmetric m-th difference.
The following result on comonotone approximation of continuous func­

tions is known.
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THEOREM A. Let fE C[ -1, 1] have 1~ r < 00 changes of monotonicity
at the points {y;}; = I: - I < Y I < ... < Yr < I. Then there exist polynomials
P:, P:* E lln which are comonotone with f on [ -I, I] and such that

(1)

and

(2)

where d(r) := min{Yl + 1, Y2 - Yb ..., Yr - Yr-I> 1 - Yr} and do := min{YI + 1,
l-Yr}.

For piecewise monotone differentiable functions we have the following.

THEOREM B. Let f E C I [ - 1, I] have 1 ~ r < 00 changes of monotonicity
at the points {Yi};~l: -1 <YI < ... <Yr< I. Then for each n? I there is
a polynomial Pn E lln comonotone with f and such that

(3)

and

(4)

where do := min {Y I + 1, 1 - Yr} .

Theorem B and the estimate (2) in Theorem A were proved by D.
Leviatan [5]. Estimate (1) is due to A. S. Shvedov [13] and X. M. Yu
[ 16]. It was also shown by A. S. Shvedov [13] that the constant C* in (1)
can not be replaced by that independent of d(r). Moreover, the estimate (I)
is exact in the sense that w 2 can not be replaced by w 3

. This is an
immediate consequence of S. P. Zhou [17].

Other relevant results can be found in [1,3,6-12], for example.
Thus, for comonotone polynomial approximation there are quite a few

satisfactory results. At the same time, it seems that little is known about
coconvex approximation. The only direct results of this type which we are
aware of at present are the following.

(i) R. K. Beatson and D. Leviatan remarked in [1] that it is
possible to obtain Jackson type theorems for coconvex approximation of
functions with only one inflection point.

(ii) X. M. Yu [15] obtained a Jackson type estimate of coconvex
approximation of a function with one regular convexity-turning point.
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(iii) Also, in [15] X. M. Yu quoted her result on coconvex
approximation of differentiable functions (which are at least in C 3[ - 1, 1])
with some extra conditions on convexity-turning points.

The goal of this paper is to present a result on coconvex approximation
which is analogous to Theorem B. Namely, we prove the following
theorem.

THEOREM 1 (Coconvex Approximation). Let fE C 2
[ -I, I] have

I:::;r<oc inflection points at LVi};~I: -1<Yl<"'<Yr<l, do :=
min {Y I + 1, 1 - Yr} and d( r) := min {Y I + I, Y2 - Y I, ... , Yr - Yr_ I' 1 - Yr} .
Then there exists a constant A = A(r) such that for each n > A(r)/d(r) there
is a polynomial Pn E nn satisfying f"(x) p;; (;'()?:- 0, X E [ -1, 1] and such that

and

Ilf- PIlII :::; qr) n -2W q>(/", n -1),

III' -p~ll:::; qr) n-1wq>(/", n- 1
)

(5)

(6)

(7)

COROLLARY 2 (Comonotone Approximation). Let f be the same as in
Theorem B. Then there exists a constant A = A(r) such that for each
n>A(r)/d(r) there is a polynomial PnEnn satisfying l'(x)p~(x)~O,

x E [ -I, I], and the follOll'ing inequalities hold:

and

Ilf' 'II C(r) (f' -1)- PIl :::; r1 Wq> , n .
v'do

2. DEFINITIONS AND NOTATION

(8)

(9)

/:=[-1,1];

Throughout this paper we use the following notation (cf. [4, II, 12]):

._ ./1- x 2 I.
An(x).- +-0,

n n·

jn
x j := Xj. n := cos --;;' O:::;j:::; n; 1 :::;j:::;n;
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xJ :=X],,, :=COS f: -:n)
o ._ 0 • _ (in 3n)

x j .-Xj ." .-cos -;;- 4n

if j <nI2,

if j~nI2;

I ~i~n

(note that hj± 1 < 3hj and Lf,,(x) < hj < 5Lf,,(x) for x E IJ.
Also,

t)x) := Ij . ,,(x) := (x - xJ) -2 cos 2 2n arccos x + (x - ;\'J -2 sin 2 2n arccos x

is the algebraic polynomial of degree 4n - 2 (see [11, 12], for example).
If

1 m k

[fJ(n,ll;al, ... ,am;bl, ... ,bk):=J tj(y)" n (y-a;) n (b;-y)dy,
-I ;~I ;= I

then for ai ~ ),> I ~ i ~ m, bi ~ x j _ l , I ~ i ~ k and sufficiently large fl

Tj(n, fl; ai' ..., am; b l , ..., bk)(x)

Jx 1.(},)I'nm (v-a·)Ok (b.-y)dy'= -I J 1=1 _ I ,~I I

. [fj(n,fl;al, ..·,am;bl,···,bk)

is the algebraic polynomial of degree 2fl(2n - I) + m + k + I, which is well
defined because [fj(n,fl;al, ... ,am;bl, ...,bd is positive for large fJ. (see
Proposition 4).

If m = 0 or k = 0, i.e., if there are no a/s or b/s in the definition of ~,

we use the notation Tj (n,/l;0;b l , ...,bk)(x) or Tj (n,fJ.;al, ... ,am;0)(x),
respectively. Thus, for example,

. . . J~ 1 tj(y)11 07= 1 (b i - y) dy
Tj (n,fJ.,0,b l , •••,bk)(x)·=f l .( )IlTI k (b-)d'

-I IJ Y I = I 1 Y Y

We also denote

h
!/Jj:=!/Jj.,,:=!/Jj.,,(x):=1 _ J

1
+

h
,

x XJ J

{

-l if !(x) <0,

sgn(f(x)):= 0 if !(x) =0,

I if !(x»O.

if X~Xj'

otherwise. '

and sgn(X(x) :=sgn(x-ct).

C are positive constants which are not necessarily the same even when
they occur on the same line. In order to emphasize that C depends only on
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the parameters VJ, ... , Vk we use the notation C( VI' ... , Vk)' At the same time,
A(r) denote constants which depend only on r and remain fixed
throughout the paper.

3. AUXILIARY STATEMENTS AND RESULTS

PROPOSITION C (See [4, 11, 12], for Example). The folio wing inequalities
hold:

min{(x-xJ)-2, (X-.X')-2} ~tj(x)~max{(x-xJ)-2,(x-'X'j)-2}, xEI,

( 10)

(II)

n
for j~2'

(12)

and

for
. n
]>­

2

(13)

XEJ. (14 )

The following proposition can be easily verified either by straightforward
computations or by induction on v.

PROPOSITION 3. Let v be an integer, p ~ V + 2 and C j ~ to > 0, I ~ i ~ v.
Then the following estimates are valid:

The following result is a generalization of Proposition 2 of [ 4 ].

PROPOSITION 4. Let I ~j ~ n be fixed. Then the following inequalities
hold:

~ C(Ji),
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where ai ~ Xj' 1~ i ~ m, bi~ x j _ I' 1~ i ~ k andp is sufficiently large in com­
parison with k and m (jor example, p ~ 5(m + k + 1) will do).

Proof (cf. [4, 11]). The proposition will be proved for j ~ n12. For j > nl2
the proof is analogous with the only difference that instead of( 12) one should
use (13).

We write

Now denoting 07~ 1 (Xj~ I -ail 07= I (b i - .\) by r jmk and using estimates
(10)-(12), we have

Q ~ r ( -) 10 31"h ~2p - 10 3pr h ~2p + I0'2'.:: jmk Xj _ 1 Xj j - jmk j

and

\'- m k

(92 ~ r: I1 (XJ -aJ I1 (bi-.x) mint (y -XJ)-21", (y _.\)-21'} dy
'\j i= 1 i= 1

~ 4 -m-krjmk r: min{(y - xJ) -21', (y - x) -21'} dy
-""J

2 (8)21
'-1>- __ 4-m-k(22p-l_l) _ r h~2t,+1

~2p-l 3 Jmk J .

Similarly, Proposition 3 and the inequalities (12) yield

f
' m k

1(911 ~ OJ tj(y)" I1ly-a i l I1 (bi-y)dy
-1 i=l i~ I

x' m k

~f) (xJ_y)-2t' I1 (!xj-1-a;l+xJ-y) I1 (lb;-Xjl+xJ-y)dy
-I i~ I i= I

f
x m k

~ 0 t- 21' I1 (IXj-1-ail+t) I1 (/bi-xj/+t)dt
Xj ~ Xl i = 1 i = 1



COCONVEX POLYNOMIAL APPROXIMAnON

and

1 m k

le 3 1:(L tj(y)I' n (y-a;) n Ibi-yl dy
'\J-I i= I ;= I

147

I m k:(f (y_;\'j}-2I' n (Ixj_,-ail+y-;x) n (!b;-xjl+y-.x';jdy
XJ-l ;= 1 i= I

:(rJ~ ~ t- 211 IT (lxj_l-ail+t) IT (/b;-Xj/+t)dt
-'J - 1- -'1 i = ] i = 1

Hence,

2411+m+k-1
Il( · ·b b )/ 211- I (T )-1':::10 31'+ ,:::10 311 + 1j n, /l, aI' ..., am, I' k lj jmk -..;: k -..;: .

2/l-m- -I

Finally, the inequalities in the other direction are the following

II ( . . b b ) h 211 - I(T )-1j n,j.J., at, ..., am' I' ... , k j jmk

LEMMA 5. Let ai:(xj , I :(i:(m, b;~xj_I' I :(i:(k and 1:(j:(n be a
fixed index. Thenfor the polynomial Tj(x) := Tj(n, 11; aI' ... , am; b l , ... , bk)(x)
of degree :(4/ln + m + k the following inequalities hold:

(15)

and

(16)

where 11~5(m+k+ I), xEI.
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Proof Proposition 4 and the inequalities (14) imply for any x E I

m Ix - a I k Ib - xl
IT;(x)1 ~ C(Il) t)x)P h]P-l n - i n i ­

i~l IXj-I-ail i~l Ibi-xjl

~Cft.l)ljJ]llhj-l fi (1+lx-.\)+hj h~ )
i~ I hj IXj - 1 ail

x Ii (1 + Ix - xj 1+ hj ~.)
i~ I hj Ib i -\jl

~ C(Il) ljJjJ'hj-
1(1 + ljJj-l)m+k ~ C(1l) ljJ]ll-m-khj-

1,

which is the inequality (15).
To prove the remaining inequality (16), first, we consider the case x < _'>

The estimate (15) implies

~C(Il)h]ll-m-k-l r (x
j
_y+h

j
)-211+m+kdy

-:x'

For x ~ Xj' similarly, we have

~ C(1l) hlp -m -k - I fXO (y _ X
j
+ hj) -2p + m+k dy

x

Thus, the inequality (16) is also verified. I

Using the identity sgnxlx) = 2Xj(x) - 1 a.e. we conclude that the polyno­
mial 1)(x) := 2T)x) -1 sufficiently approximates sgnxrx). Also, it is easy
to see that Tj(x) is increasing on I j . Later on we will need similar polyno­
mial (it will be denoted by Qj(x» which satisfies one extra condition:
sgn(Qj(x»=sgn,,(x) !or some (xEIj (In other words, we want the polyno­
mial not only approximate sgn,,(x) and be increasing on I j , but also be
copositive with sgn,,(x)). Our construction of Tj(x) does not immediately
yield this equality. However, 1)(x) can be refined to satisfy it. Namely, the
following lemma is valid (note that we assume ai ~ X j + l' 1~ i ~ m,
bi~Xj_2' l~i~k).
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LEMMA 6. Let n and I !(J!(n be fixed, aj!(xj + 1 , I !(i!(m, b;?-Xj _2'
I !( i!( k and IX E f j . Then there exist numbers A = 2 v

, v E .if" and O!(,;!( 1
such that for the polynomial

Qj(.x) := Qj(n, f.l., IX; ai' ... , am; b l , ..., bk)(x}

= 2gTj ,(An, f.l.; aI' ... , am; b l , ... , bd(x}

+ (I - ()Tj2(An,f.l.; ai' ..., am; b l , ..., bk}(x)} -I,

where indicesJ]=JI(A) andJ2=J2(A) are chosen so that Xjl.An=,xi+1 and
xi2 . An = .xj _ I' the following is true

m k

Q;(x) n (x-a;) n (b;-x}?-O,
i= l ;=1

in particular, Qj(x) increases on I j + I vlj U Ij_I' (17)

Isgn~(x} - Qj(x)!!( C(f.l.) t/JY,-m-k-I, (I8)

Isgn~(x) - Qj(x}1 !( 2/3, x ¢ I j + I U I j U Ij_l, (19)

Qj(x)sgn~(x)?-O forall xE[-I,I] (20)

and

IQj(x)l!( C(f.l.) l/J;II-m-khj-
1

• (21)

Proof First of all, denoting n I : = An we obtain the following conse­
quence of Lemma 5 for any x ¢ I j + 1 (note that Xjl. nl(X) = Xj(x) for x ¢ I j + 1):

IXj(X) - Tjl(x)1

(
h )211-m-k-l (h )21'-m-k-1

!( C(f.l.) _ JI.'" !( C(f.l.) J,.",
Ix-xj+ll+hj,.nl h)12+hjl .",

(
h )211-m-k-1 (n)21'-m-k-l C(l) I

'::::C(l) ~ '::::C(l) ~ - I- ,::::-
'" I- h

j
'" I- n I - A 21' - m - k - I '" 3

for sufficiently large A.
Analogously, for any x¢lj _ 1 choosing n l to be large in comparison with

n one has
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Now let A be fixed and such that the above inequalities are satisfied.
Since tx E I j we have, in particular, Tj,(tx) ~ 2/3 and Th(tx) ~ 1/3. Hence,

there exists O~.;~ I such that Qj(tx)=2{';TjJtx)+(1-';) Th(tx)} -I =0.
The above estimates yield

Isgn~(x) - Qj(x)1 ~ 2/3, x ¢ I j + I U I j U Ij_l,

which is the inequality (19).
Now note that (18) and (21) are immediate corollaries of Lemma 5,

the fact that IjJj - C, X E I j + 1 U I j U I j _ I and the observation that
max{ljJj,.lIJ' t/!h.lIJ ~ lOA 2t/!j (see [4, ineq. (62)], for example).

Finally, using the definitions of Qj(x) and Tj(x) we have

Q5(x)

2
= {.;T;JAn, J1; ai' ... , am; hi' ... , hk)(x)

m k

= f1 (x-a;) f1 (h;-x)
;= 1 i= 1

Since the expression in square brackets is always positive (see
inequalities (14) and Proposition 4) we conclude that Q5(x) is copositive
with TI7'~1 (x-a;) TI7~1 (hi-X). In particular, since a;~xj+), I ~i~m
and hi~Xj_2' 1~i~k, Qj(x) increases on !j+1 u!ju!j_t. Together with
(19) this implies (20). I

4. PROOF OF THEOREM 1

We use the method from [1] and [5] and prove Theorem I by induc­
tion on r, the number of inflection points. For r = 0 Theorem I becomes a
theorem on convex approximation which is a simple consequence of
Theorem 2 of [ 4]. Let us assume that (5 )-( 7) are valid for functions with
r - 1~°inflection points. Let f E C 2

[ -I, I] have r < oc inflection points
at {Y;}~=t: -I<YI<'" <Y,<1. Without loss of generality we can
assume that I"(x) ~ 0, X E [ -I, YI]. We fix one of y;'s. In fact, it is not
important which one to fix, but notation and considerations are simpler for
YI =: tx (also, if r = I it is convenient to denote Y2:= y,:= I). We can
assume that f( tx) =f' (tx) = 0 (subtract a linear function from f which,
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obviously, has no effect on convexity). Since f E C 2 and x is an inflection
point, then!" (x) = 0.

Following [1 J we define the "flipped" function

~ {fiX)
f(x):= -fix)

if x ~x,

if x < x.

Then jE C 2
[ -1, 1J, j(x) =f'(x) =j"(x) = ° and j has r - 1 inflection

points at Y2' ... , Yr' and also, as was shown in [5J,

(22)

By induction hypothesis there exists a constant A(r - 1) such that for
each n>A(r-l)/d(r)~A(r-l)/d(r-l) there is a polynomial q"En"
such that j"(x) q::(x) ~ 0, x E I, and the inequalities (5 )-(7) hold for j and
q" (since j( x) = 0, increasing the constant in (5) we can assume that
q,,(x) = 0).

Now we fix n>max{A(r-l)/d(r), 50/(Y2-X), 50/(x+ I)} and consider
corresponding decomposition of [-1, 1]: I=U;~lIi=U7=1[Xi,Xj-l].
Let index Ja be such that x E [xio ' :rio _ Il. Then xio + .1 ~ - 1 and xi" - 4 ~ Y2,
i.e., [- I, xJ and [x, Y2 J contain at least three intervals Ii each. This
implies, in particular, that rp( x) ~ n - I and, therefore, 2rp( x) ~ nL1,,( x).

Now we consider the algebraic polynomial PI/(x) := Lp~(y) dy such that

and show that it is possible to choose polynomials VI/(x) and Wn(x) so
that PlI is coconvex with f and the inequalities (5)-(7) are satisfied. We
claim that the following properties of VlI and W lI are sufficient for cocon­
vexity of Pn with f:

(i) VIl(x) sgnc,(x) ~ 0, x E I,

(ii) V;, is copositive with (q~(x) - q~(x») q~(x) sgn"Jx),
i.e., (q;,(x)-q~(x»q~(x) V~(x)sgn,,(x)~O,xEI,

(iii) W~ is copositive with!"(x) sgn(q~(x»), i.e.,!"(x) W~(.'\') sgn(q~(x»

~ 0, XE I.

Indeed, using these properties, the inequality j"(x) q~(x) ~°and the
definition of j we have

sgn {p~(x) !"(x)}

= sgn{ (q~(x) - q;,(x» V;,(x) !,,(x)

+q~(x) VI/(x)!"(x) + q~(x) W;,(x)!,,(xl}
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~ sgn{ (q~(x) - q;,(ex)) V;,(x)f"(x) + q;;(x) V,,(x).f"(x)}

= sgn{ (q;,(x) -q;,(x)) V;,(X) q;;(x) sgn"Jx)

+(q;;(X))2 V,,(x) sgnAxl} ~o.

Therefore, it is sufficient to construct polynomials V,,(x) and W,,(x)
which satisfy conditions (i)-(iii) and also (as we will see later) sufficiently
approximate sgn~(x).

Using Lemma 6 we conclude that the polynomial

if q;,(x)~O,

if q;,(ex) <0.

satisfies condition (iii).
Indeed, it is clear that f"(x) is copositive with f1;~, (J't - x). Lemma 6

yields that if q;,((X)~O, then W;,(x)=Q;u+ 2(n,/l,xju + 2;0;J'\, ... ,Yr)(x)
is also copositive with f1;~ I (J't - x) and, therefore, with f"(x). If
q;,(ex) <0, then W;,(x)=Q!\I_2(n,fl,xj\l_2;Y,;Y2, ... ,Yr)(x) is copositive
with (x- .VI) f1;~2 Cv,-x) and, hence,

sgn{ W;,(x)f"(x)} sgn{q;,(ex)}

= -sgn{ W;,(x).f"(x)} = -sgn f-fI, (J't-X)2}~0.

Thus, (iii) is satisfied.
To construct V,,(x), first, we note that since q~(x) changes sign only at

Y2, ... ,y" the function q~(x)-q;,((X) is monotone on each of the intervals
[ -1, Y2], [y" 1] and [Yi, Yt+ 1], 2 ~ i ~ r - 1. Thus, q;,(x) - q~((X) has at
most one zero in each of these intervals. Moreover, it changes sign at every
zero different from Yi, 2~i~r (Note that q;,(x)-q;,(ex) vanishes on some
subinterval only if qll(x) is a linear function. Since this case is trivial,
everywhere below we assume that q,,( x) is a polynomial of degree ~ 2).
Using this and also the inequality q;;(x) ~ 0, -1 ~ x ~J'2 we conclude that
the function (q~(x)-q;,(x))q;;(."I:) is nonpositive for -1 ~x~ex, non­
negative for x ~ x ~ Y2 and has at most 2( r - 1) changes of sign on [Y2, 1]
(we denote these points in increasing order by PI' P2, ...,PI' I ~ 2r - 2
and note that PI =Y2). Hence, (q~(x) - q~(ex)) q;;(x) is copositive with
(x-x) f1~~1 (Pi-X).

Now we define

V,,(x) := Qju(n, fl, ex; 0; PI' ... , PI)(X).
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Condition (i) immediately follows from (20). Using (17) we conclude that
V~( x) is copositive with TI; = I (Pi - x). Therefore,

sgn{ (q~(x) - q~(:x)) q~(x) V~(x) sgn,,(x)}

= sgn {(X -:x) sgn,,(x) iDI (Pi - .xY} ~ 0,

and (ii) is also satisfied.
Thus, Pn(x) is coconvex withf(x) and it remains to verify the inequalities

(5}-(7).
Using [5], properties of wCP' inequality (22) and recalling that 2rp(:x)~

nLln(:x) we have the following estimates for any x E I:

and

=C·I,~IW (f'" n-l)'<C·/·~lw (f" n- 1 )0/ )0 lp' --....;;: 0/,/0 'qJ , .

1]'(x)1 = 1.1'(x) - ]'(oc)1 = Ix -:xII]"(()1

~ C Ix - ocl" - '~ol + hjo (1)",(/", n- 1 )

Jo

Ix-xJ'ol+hJ I
,< C( Ix - x I+ h ) 0 (l) (f" n - ')" . . Jo iO , Cp'

Ijo

(23)

(24)

since Ix -:xl ~ I( - ocl·
Now we choose J.1 so that all the conditions above are satisfied. For

example, J.1 = 15r will do. However, because this choice of J.1 is not impor­
tant we will continue to write J.1 keeping in mind that J.1 = J.1( r).

Using (23), (24) and also the inequalities 1V~(x)I~C(J.1)I/J;~hj~l,

IW~(x)1 ~ C(J.1) 1/J;~hJ~ I, Isgn,,(x) - V,,(x)1 ~ C(J.1) I/J;~ and Isgn,,(x) - Wn(x)1
~ C(J.1) I/J;~, which follow from the definitions of V" and W" and Lemma 6
(since I/JJO-I/JJo±i' i=1,2 and Isgn,,(x)-sgn'jo±2(x)I~C(J.1)I/J;~),we have
the following estimates:
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I/"(x) - p~(x)1

= I(!"(x) - q;;(x)) sgn,,(x) + q~(x)(sgn,,(x) - VIl(X))

- (q~(X) - q~(a)) V~(x) - q;,( IX) W;,(x) I

~ 1]"(x)-q~(x)1 (1 + Isgn,,(x)- VIl(x)l)

+ 1]"(x)1 Isgn,,(x) - VIl(x)1 + 11'(x) - q;,(x)11 V~(x)1

+ 11'(a) - q;,(a)1 (I V~(x)1 + IW;,(x)l) + 11'(x)1 IV~(x)1

1+ t/JII t/JII t/J1I-2
~qr)OJ<p(f",n-I){. }O +t/J;~-I+---..!"..+_}_O_}

mm(jY2+ I,~) nhju nhjo

~qr)OJ<p(f",n-I){ .~~ +p}'
mm( Y2+I, I-Yr) I-:x-

since nhjo ~ j I _1X
2

. Therefore,

I/"() "()I qr) (/" -I) qr) (./" -I)
X - PIl X ~ ~ ~ OJ<p , n = rJ (V<p , n .

min(v IX + I, v I - Yr) V do

Similarly,

II'(x) -p~(x)1

= 1(1'(x) - q~(x)) sgn,,(x) + q~(x)(sgn,,(x) - VIl(x))

+ q~(IX))( VIl(x) - W,,(x))1

~ C( r) n - 1OJ<p(f", n - I ){ 1 + t/J j:, + t/Jj~ -- 2}

~ qr) n -IOJ<p(/", n -I)

and, using the identity ); q~( y) sgn,,( y) dy = q,,( x) sgn,,( x),

I/(x) -p,,(x)1

= I(](x) - q,,(x)) sgn,,(x) +rq~(y)(sgn,,(y) - V/I(y)) dy

+q~(a)r(V,,(y)- W,,(y))dyl

~ C(r) n -2W <p(f", n -I)

X { I + n Ir(1 + t/Jjo( y) -2) t/Jjo( y)" dyI+ n Ir t/Jjo( y )" dy I}
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~ qr) n- 2
(1),/,(j", n- 1

) {I +n It' Cy_.:~ol +hJ
1

l-2 dY !}

~ qr) n- 2(1),/,(j", n -1) {I + nhj~-21r(Iy -al + hjo )2- 1i dY '}

~ qr) n -2W ,/,(j", n -1){1 +nh
jo

} ~ C(r) n -2W ,/,(j", n -1).
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Finally, to complete the proof of Theorem I it is sufficient to recall that
Pn E nClr) n and use properties of (I),/, modulus.

Remark. Although, all the proofs were given in the case when f has
finitely many inflection points, the considerations will not change if we
allow f to be linear on some subintervals. For example, if 1"(x) = 0 for
x E [a, fJ] c ( - 1, 1), it is sufficient to fix any X oE [a:, fJ] as an "inflection"
point. Thus, Theorem 1 is valid for any function with finite number of con­
vexity changes.
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